

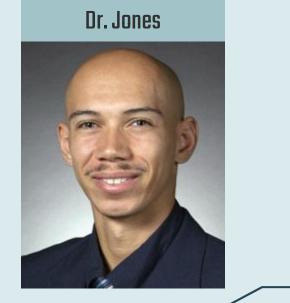
FINAL DESIGN

SDMay25-01

James Minardi, Eli Ripperda, Lindsey Wessel, Mason Inman

SDMay25-01

James Minardi [CprE]


Eli Ripperda [CprE]

Lindsey Wessel [SE]

Mason Inman [SE]

JR Spidell [Client]

JR SPIDELL

- Sr. Principal Systems Engineer
- This is not affiliated with his work this is an independent project.
- Formerly volunteered to help with individuals with cerebral palsy and is motivated to help them further.
- Wants to develop assistive wheelchair
 tech with features including mobility
 assistance and real-time seizure
 detection.

- People with mobility and cognitive impairments face many challenges including maintaining independence and safety
- Lack of advanced wheelchair technologies leads to gaps in autonomy, communication, etc

OBJECTIVE

Develop a fast and accurate algorithm inference machine learning computer vision subsystem on an FPGA board to support our client's vision of advanced assistive technologies.

PROJECT OVERVIEW

SYSTEMS

- Camera
- Vision-Based ML algorithm
- Non-Vision-Based ML model
- Ultra96 v2 FPGA development board
- Display

REQUIREMENTS

- Real-time
- Accurate and performant to [NDA] fps
- Display model outputs and debugging information

*SDMay25-01 is under an NDA that prevents openly sharing specific metrics (eg. requirements).

CLIENT PERSONA

INTERESTS & GOALS

 $\overline{\checkmark}$

- Helping people in wheelchairs *
- Providing opportunities to SE & * CprE Students
- * Decrease latency in detecting health problems
- * Iterative development of overall project

- Ø
 - **CHALLENGES**
- Lacks abundant free time *

CLIENT NEEDS

PRODUCT

- ** Embedded vision & non-vision ML algorithms
- Affordable System *
- A fast and accurate system *

PROGRESS **@**

Each team needs to improve * upon their predecessors

COLLABORATION

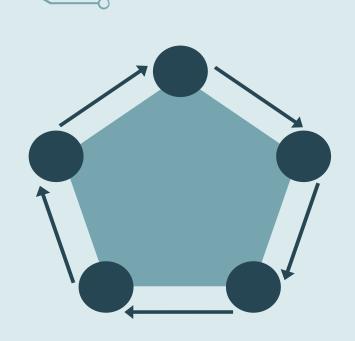
- One of many teams *
- Learn from previous teams *
- Teach to future teams **

REQUIREMENTS

REQUIREMENTS

റ

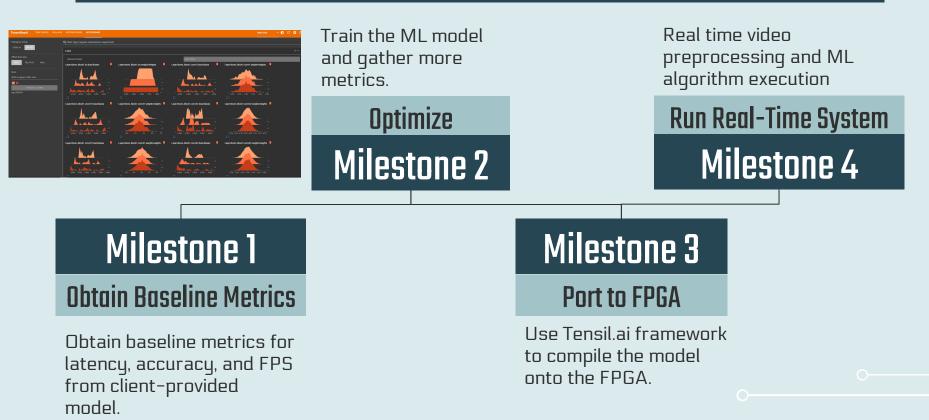
- [NDA] FPS
- ✤ [NDA]% accuracy
- FPGA: Ultra96v2
- Tensil.ai to generate FPGA based ML accelerator



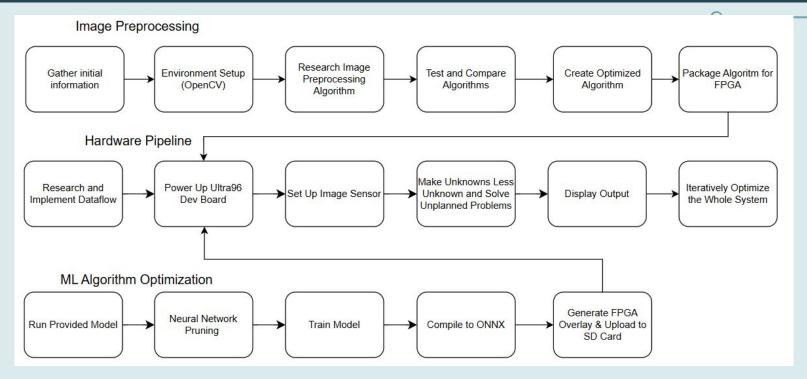
- Aid in the handoff process to help future teams
- Well-documented work

- Low latency
- High accuracy
- Improve care of wheelchair bound individuals

MANAGEMENT


PROJECT MANAGEMENT STYLE

Agile


- Weekly client, team and advisor meetings.
- Requirements are flexible and changing per client request.
 - Concurrent work with other Sr. Design teams.

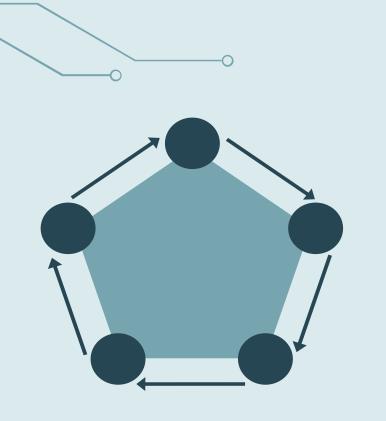
MILESTONES

TASK DECOMPOSITION

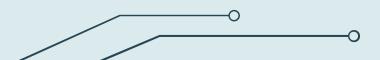
GANTT CHART

		TASK	PHASE ONE								PHASE TWO								PHASE THREE										PHASE FOUR													
WBS				MEEK 8			ÆEK 9			WEEK 10			WEEK				EK 12			WEEK				EK 14			EEK 1															
NUMBER	TASK TITLE	OWNER	MT	WR	F	мт	W	R F	MT	WF	RF	M	TW	R	FM	TN	WR	F	MT	W	RF	F M	TV	NR	F I	ТИ	WI	RF	M	TW	R	FM	TV	NR	F	MT	w	RF	M	TI	W	R
	Run Compiled ML Model on FPGA																																									
1	Create Compiled ML Model	James																																								
11	Research Tensil	Eli																																								
1.2	Make first Compilation	James																																								
13	Compile Mason's Model	James										1																														
2	Download Model onto FPGA	James																																								
-3	Connect & Setup I/O for ML Model	Eli																																								
3.1	Connect & Setup Webcam	Eli																																								
.3.2	Understand & Define ML Model Output	James																																								
-3-3	Determine How to Display Output	Eli																																								
34	Display Output	James																																								
	Image Preprocessing																																									
1	Gather Initial Understanding	Lindsey																																								
2	Environment Setup	Lindsey											1																													
3	Research	Lindsey									_																															
3.2	Compare algorithms	Lindsey											_																											-		
3.2	Test model	Lindsey																																								
3-3	Compare models	Lindsey																																								
4	Create optimized solution with research	Lindsey																																								
	ML Algorithm Optimization	Mason																																								
1	Research	Mason																																								
2	Environment Setup	Mason																																								
3	Obtain Training Data	Mason																																								
4	Obtain baseline model to put on board	Mason																																								
5	Identify/Research points of optimization	Mason																																								
6	Implement Optimizations	Mason																																								
-7	Train model with Optimizations	Mason																																								

METRICS & EVALUATION CRITERIA


METRICS

- Test Latency Script (ms)
- Compare to Training Data
- Compare embedded ML prediction to ground truth
- Track FPS


EVALUATION CRITERIA

- Latency (ms)
- Accuracy (IoU values)
- Speed (FPS)

*SDMay25-D1 is under an NDA that prevents openly sharing specific metrics (eg. requirements).

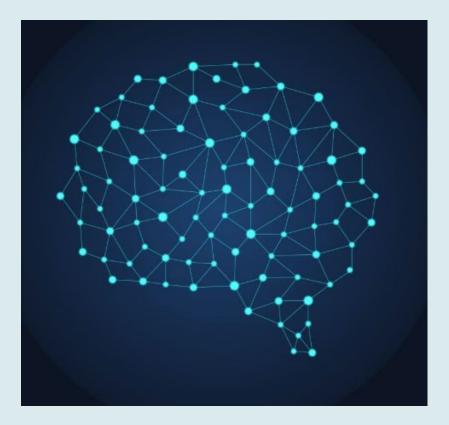
OUR DESIGN

MAJOR COMPONENTS

O] ML Algorithm Optimization

Team member: Mason

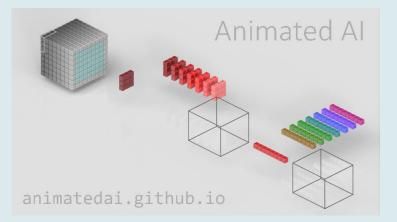
Team member: Lindsey


O3 ML Acceleration: Tensil

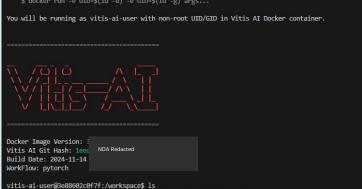
Team member: Eli

04 Ultra96v2 Board

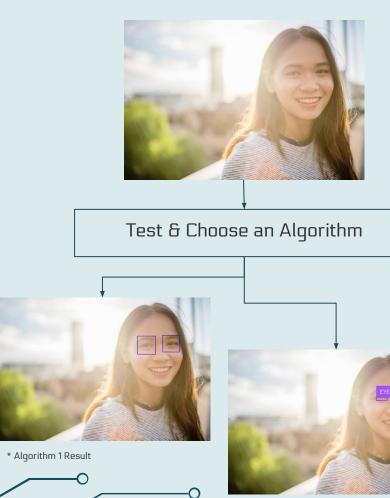
Team member: James


ML Algorithm Optimization

OPTIMIZATION STRATEGIES


DEPTHWISE SEPARABLE CONVOLUTION

 Significant parameter reduction through smaller convolutions.



NEURAL NETWORK PRUNING

 Implement Vitis-AI tooling to use quantization aware training.

vitis-ai-user@3e886602c0f7f:/workspace\$ ls <u>Syessemsee</u> <u>Witis=AI</u> requirements.txt requirementsTest.txt vitis-ai-user@3e886602c0f7f:/workspace\$

Image PreProcessing ML Algorithm

* Algorithm 2 Result

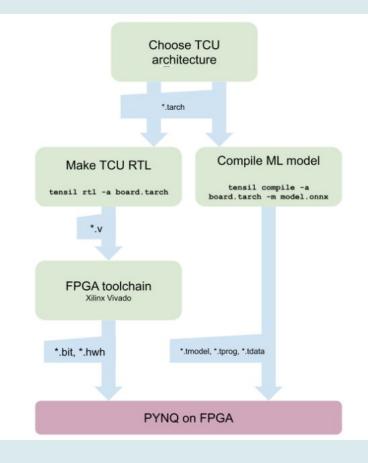

CHOOSING AN ALGORITHM

Input

Algorithm 1

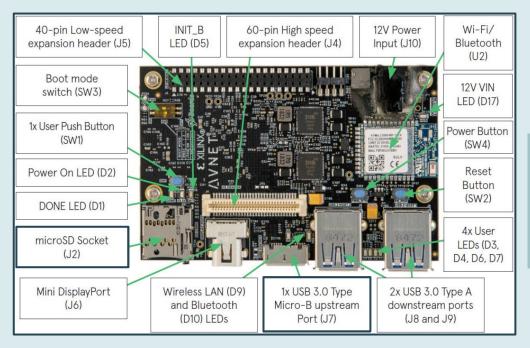
Algorithm 2

0.10858750343 0.11860680580 0.11986422538 0.10754251480 0.11414432525 0.10358309745 0.12024736404 0.11383533477 0.16153049468 0.11439013481 0.10884189605 0.10570573806 0.11348056793 0.16413927078 0.10365796089 0.10923194885 0.11400699615 0.10471320152 0.12034702301

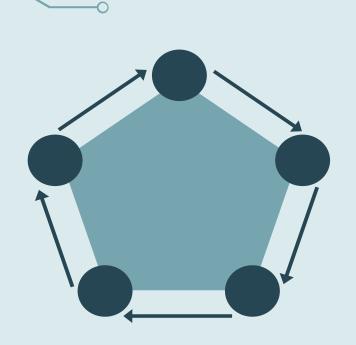

ACCURACY & TIME [s]

0.33411288 0.45055270 0.47802901 0.34627008 0.19120693 0.20115184 0.21317386 0.32428646 0.18401265 0.24870061 1.61701750 0.40877246 0.31383681 0.54106521 0.30658364

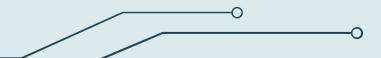
0.48964858


*Algorithm 2 is more accurate but slow

Tensil.Al



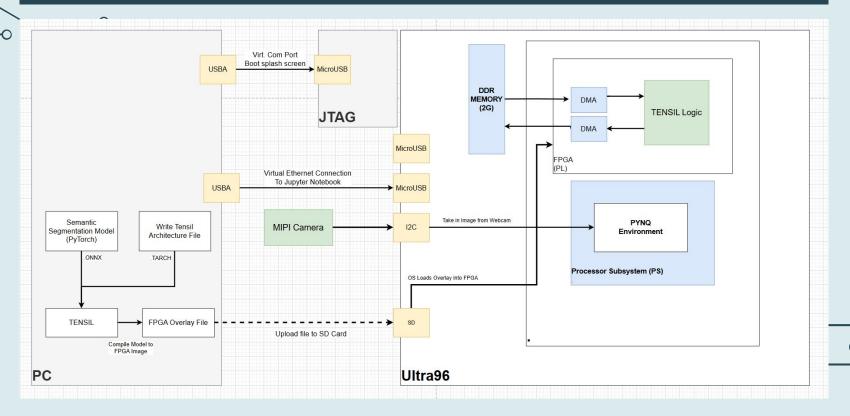
Ultra96v2


Topology

DESIGN & VISUALS

VIJL

SYSTEM FLOW DIAGRAM


This represents the flow of data (an image/frame) will go through in our system.

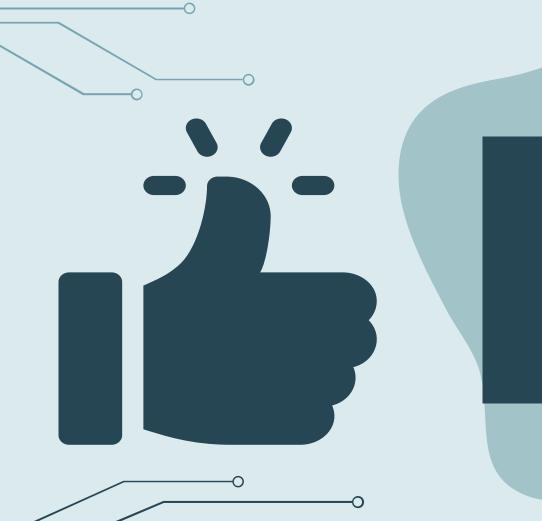
SYSTEM BLOCK DIAGRAM

0

SYSTEM BLOCK DIAGRAM DESCRIPTION

ULTRA 96v2 Board

- AMD Zynq UltraScale+ processor
- ✤ 2GB DDR Memory
- PYNQ DS
 - Jupyter Notebook-based
 OS with Python APIs
 - Runs the Image preprocessing algorithm
- Uses AXI to send video data between the OS and model on the FPGA


THE MODEL

- Trained Model asynchronously compiled through Tensil-AI
- Model can now be used to generate and FPGA overlay for the board

I/O Devices

- ✤ MIPI Camera
- Ethernet connection via micro-USB for Jupyter notebook development
- Displayport output to monitor

Ethics

Ethical Concerns

Bias

- Will the Image Processing algorithm have unintentional <u>gender or</u> <u>ethnicity bias</u>?
- Training data must be diverse.

 \cap

Liability

- Our system in the long-term may be used to <u>determine life saving</u> <u>decisions</u>.
- We must produce and be confident on the metrics we present.

Contextual Limitation

- How will the system's performance (accuracy) be <u>impacted</u> in <u>non-ideal</u> <u>environments</u>?
- Thoroughly test sub-systems in different environments.

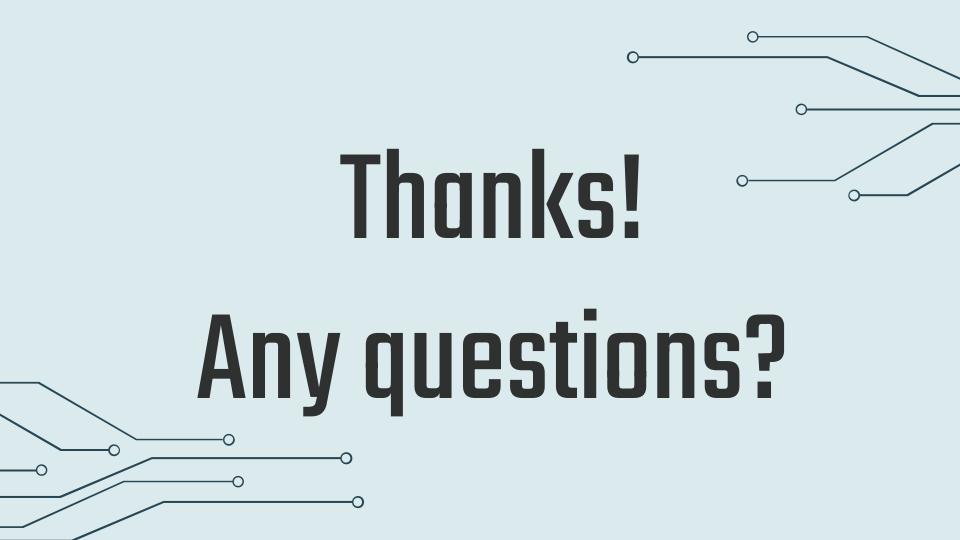
CONCLUSION

As a result

Of our given problem and considerations of our project

We will

Increase the performance of an existing FPGA system


To achieve

Throughput high enough to make real-time decisions.

Linking to Our Client's Problem

This increase in data throughput will supplement our client's system, unlocking the ability to predict when end-users might have health-affecting events such as a seizure.

